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Abstract—The task-based programming model associated with
dynamic runtime systems has gained popularity for challeng-
ing problems because of workload imbalance, heterogeneous
resources, or extreme concurrency. During the last decade, low-
rank matrix approximations—where the main idea consists of
exploiting data sparsity, typically by compressing off-diagonal
tiles up to an application-specific accuracy threshold—have been
adopted to address the curse of dimensionality at extreme
scale. In this paper, we create a bridge between the runtime
and the linear algebra by communicating knowledge of the
data sparsity to the runtime. We design and implement this
synergistic approach with high user productivity in mind, in the
context of the PaRSEC runtime system and the HiCMA numerical
library. This requires extending PaRSEC with new features to
integrate rank information into the dataflow so that proper
decisions can be made at runtime. We focus on the tile low-
rank (TLR) Cholesky factorization for solving 3D data-sparse
covariance matrix problems arising in environmental applica-
tions. In particular, we employ the 3D exponential model of the
Mateŕn matrix kernel, which exhibits challenging nonuniform
high ranks in off-diagonal tiles. We first provide dynamic data
structure management driven by a performance model to reduce
extra floating-point operations. Next, we optimize the memory
footprint of the application by relying on a dynamic memory
allocator, and supported by a rank-aware data distribution to
cope with the workload imbalance. Finally, we expose further
parallelism using kernel recursive formulations to shorten the
critical path. Our resulting high-performance implementation
outperforms existing data-sparse TLR Cholesky factorization
by up to 7-fold on a large-scale distributed-memory system,
while minimizing the memory footprint up to a 44-fold factor.
This multidisciplinary work highlights the need to empower
runtime systems beyond their original duty of task scheduling
for servicing next-generation low-rank matrix algebra libraries.

Index Terms—Low-rank matrix computations, Task-based
programming model, Dynamic runtime system, Asynchronous
executions and load balancing, High-performance computing,
User productivity, Environmental applications.

I. INTRODUCTION

The high-performance computing (HPC) community has en-
joyed an order of magnitude performance improvement every
five years [1] thanks to hardware innovations and technology
scaling. At the dawn of exascale, this means systems with tens
of millions of concurrent threads. This rapidly evolving hard-
ware landscape requires new software paradigms, and perhaps
equally important, advanced algorithmic responsibilities [2].

The coupling of task-based programming models with
dynamic runtime systems corresponds to one of the most
critical paradigm shifts embraced in order to replace the
traditional bulk synchronous parallel model in favor of the
asynchronous execution model [3]–[5]. This versatile software
solution has shown performance superiority by overlapping
expensive data movement with fine-grained computations and
ultimately achieving higher occupancy on the underlying hard-
ware architecture. Moreover, runtime systems are inherently
designed with the abstraction of the hardware complexity.
This latter feature enhances user productivity and permits fast
code deployment on massively parallel systems. At the same
time, existing numerical methods have displayed limitations
in addressing big data problems, due to high algorithmic
complexity and large memory footprints. Low-rank matrix
approximations may overcome the curse of dimensionality [6].
The main idea consists of approximating off-diagonal tiles up
to an application-specific accuracy threshold and carrying out
the matrix algorithm on the newly obtained data structures.
This compression step may sacrifice numerical accuracy, so it
results in a tunable tradeoff. By exploiting the rank structure
naturally embedded in the data-sparse operator, lower com-
plexity may be obtained in storage, data motion, and arithmetic
operations, compared to traditional dense algorithms.
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We propose a synergistic bridge between the runtime and
linear algebra communities in the context of dealing with
large-scale covariance matrices in geospatial statistics. We
employ the HiCMA tile low-rank (TLR) numerical library and
the PaRSEC dynamic runtime system to showcase the mutual
benefits of this approach. The objective is to propagate the
rank information to PaRSEC so that it can make proper run-
time decisions before HiCMA operates on the computational
kernels. In particular, we focus on the challenging exponential
model of the Matérn matrix kernel for 3D environmental
applications [7]. This model results in heterogeneous rank
distribution with high-rank tiles located outside of the diagonal
tiles. We extend PaRSEC with new functionality that takes
into account the rank information in the task dataflow: (1) a
dynamic data structure management driven by a performance
model to reduce extra floating-point operations; (2) a dynamic
memory allocator to further optimize memory footprint; (3)
a rank-aware data distribution to cope with the workload
imbalance; and (4) a recursive formulation of computational
kernels to expose concurrency during the critical path. We use
these features to leverage the performance of TLR Cholesky
factorization at the heart of the maximum likelihood estimation
(MLE) [8]. MLE is employed for estimating parameters and
reaches very high dimensions in 3D environmental applica-
tions.

The resulting TLR Cholesky from HiCMA powered by
PaRSEC (called PaRSEC-HiCMA-New) outperforms a previ-
ous implementation (called PaRSEC-HiCMA-Prev) by up to
a 7-fold speedup on a large-scale distributed-memory system,
while minimizing the memory footprint up to a 44-fold factor.
We believe this multidisciplinary symbiosis is fundamental
to porting the next-generation of low-rank matrix algebra
libraries to exascale. This demands empowering runtime sys-
tems beyond their original duty of task scheduling.

The remainder of this paper is as follows. Section II presents
related work and lists our contributions. Section III provides
background information about covariance matrix problems for
3D environmental applications and describes how HiCMA and
PaRSEC synergistically solve them. In particular, Section IV
details the challenges carried by the 3D exponential kernels.
Section V introduces the PaRSEC dynamic data structure
management, assisted by a performance model, that requires
new numerical kernel developments in HiCMA, as explained
in Section VI. Section VII highlights the novel rank-aware
runtime optimizations integrated in PaRSEC. We report per-
formance results in Section VIII and conclude.

II. RELATED WORK

The richness of the recent literature on low-rank matrix
approximations is evidence of a compelling new approach
to big data scientific problems [9]. In particular, hierarchi-
cal matrices (H-matrices) [10]–[12] constitute a family of
blockwise low-rank matrix approximations used to reduce
the arithmetic complexity and the memory footprint. Depend-
ing on the data sparsity pattern of the operator, there exist

many H-matrix data compression formats for weak admissi-
bility (e.g., Hierarchically Semi-Separable (HSS) [13], [14],
Hierarchically Off-Diagonal Low-Rank (HODLR) [15]) and
strong/standard admissibility (e.g., H2-matrix [16], Block/Tile
Low-Rank (BLR / TLR) [2], [17]). Thanks to their inherent
recursive formulations, both compression formats may attain
linear arithmetic complexity and memory storage for some
matrix problems and operations [18]. Weak admissibility is
well suited for off-diagonal blocks exhibiting low ranks (e.g.,
typically 2D problems), while strong admissibility can still
maintain the lower complexity in the presence of off-diagonal
blocks with high ranks (e.g., typically exacerbated in 3D).

While the theoretical lower bounds of these low-rank ap-
proximation schemes are attractive—replacing factors of prob-
lem dimension with factors of maximum block rank away from
the dense diagonal blocks—their deployment on massively
parallel systems has exposed their limitations, especially in
problems where maximum block rank is high. The recursive
formulations required to exploit low rank hinder the overall
performance due to a low hardware occupancy exacerbated by
the excessive synchronization. Flattening the recursion tree and
avoiding synchronizations in-between hierarchical steps can
mitigate this inefficiency. They highlight the impact of batch
executions on graphics processing units (GPUs) to increase
the hardware occupancy [2], [19], [20] for iterative solvers.
They employ the HiCMA task-based numerical library with the
StarPU dynamic runtime system [8], [21] for attenuating load
imbalance effects on distributed-memory systems in the con-
text of TLR Cholesky factorizations. Further performance im-
provement of HiCMA has been obtained using the hybrid data
distribution implemented in the PaRSEC dynamic runtime
system [22], [23]. TLR provides a particularly nice trade-off
between optimality, performance, and user productivity [24]
since traditional dense tile algorithms can be used.

Our contributions are as follows. We leverage the PaRSEC
support for data-sparse matrix computations by embedding
in the dataflow at runtime a new dynamic data structure
management driven by a performance model to reduce extra
floating-point operations. This requires implementing new
numerical kernels in HiCMA to enable the resulting TLR
Cholesky algorithm at scale. We develop a dynamic memory
allocator to further optimize memory footprint, breaking with
the traditional, rigid data descriptor from ScaLAPACK. We
then provide a rank-aware data distribution to better balance
the workload, and further expose concurrency to shorten the
critical path by integrating a recursive formulation of all dense
computational kernels. We demonstrate on a 3D exponential
matrix kernel that engenders high-rank heterogeneity, illus-
trating performance improvement of the TLR Cholesky on up
to 12 million spatial locations for the MLE when simulating
large-scale environmental applications.

III. BRIDGING THE GAP BETWEEN LINEAR ALGEBRA
AND RUNTIME COMMUNITIES

This section provides background information on a statisti-
cal model used for climate and weather prediction applications,
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recalls the TLR Cholesky factorization in HiCMA, describes
the PaRSEC dynamic runtime system, and lays out the algo-
rithmic and software foundation roadmap for next-generation
computational linear algebra libraries.

A. Geospatial Statistics Application
Geospatial statistics applications are typically data-sparse

problems that can be modeled with the MLE-based iterative
optimization procedure as follows:

!(θ) = −n

2
log(2π)− 1

2
log |Σ(θ)|− 1

2
Z!Σ(θ)−1Z, (1)

where the covariance matrix Σ(θ) is symmetric and positive-
definite, containing the correlations between n geospatial
locations; Z represents the vector of measurements; and θ =
(θ1, θ2, θ3)! is the model parameter vector to optimize. The
objective is to calculate θ̂, which represents the MLE of θ in
Equation (1). The Matérn function defines each entry of Σ(θ):

C(r;θ) =
θ1

2θ3−1Γ(θ3)

(
r

θ2

)θ3

Kθ3

(
r

θ2

)
, (2)

where r = ‖s − s′‖ is the distance between any two spatial
locations and Kθ3 denotes the modified Bessel function of the
second kind of order θ3. The Matérn kernel is also used in
machine learning [25] and image processing [26].

As n increases, the cubic algorithmic complexity renders
solving the evaluation of MLE burdensome. Fortunately, co-
variance matrices are usually hierarchically low-rank and may
be sped up with low-rank matrix approximations.

B. The HiCMA Library
The HiCMA numerical library includes TLR matrix com-

putations that exploit the data sparsity of the covariance ma-
trix. HiCMA [2], [21] relies on STARS-H (https://github.com/
ecrc/stars-h) to generate the covariance matrix problem and
compress each off-diagonal tile up to an application-dependent
accuracy threshold. The dense representation translates into a
tile-centric compressed representation that captures the most
significant singular values (i.e., the rank of the tile). This
compressed data structure is composed of two tall-and-skinny
matrices per tile—i.e., U and V of size b × k—with b
the tile size and k the rank. Since tiles may have different
ranks, HiCMA consolidates the rank heterogeneity by using a
unique maxrank to define a homogeneous data descriptor
at the cost of a higher memory footprint. HiCMA follows
the traditional two-dimensional block cyclic data distribution
(2DBCDD) from ScaLAPACK that requires uniform block
sizes. We set the upper limit for maxrank to b/2 to maintain
the competitiveness of low-rank matrix approximations over
dense matrix computations, as far as the memory footprint is
concerned. This situation may be suboptimal for two reasons.
The presence of a single high rank (e.g., k ∼ b/2) will
define the actual maxrank for all off-diagonal tiles, which
may jeopardize the benefits of TLR compression ratio. Further,
the presence of several high ranks may also increase the
overall arithmetic complexity. Therefore, the sensitivity to rank
distribution of the rigid data descriptor may hinder the overall
performance. Once the matrix is compressed, HiCMA can

then operate on the low-rank representation of the matrix.
It performs the standard matrix operations based on high-
performance kernel implementations specifically designed for
manipulating the underlying TLR data compression format.
HiCMA currently supports StarPU, OpenMP, and PaRSEC
runtime systems to orchestrate the task scheduling of matrix
computations.

C. The PaRSEC Runtime System

PaRSEC [27] is a task-based runtime for distributed het-
erogeneous architectures capable of dynamically unfolding de-
scription of a directed acyclic graph (DAG) of tasks on a set of
resources. PaRSEC tracks all data dependencies by efficiently
shepherding data between memory spaces (between nodes but
also between different memories on different devices) and
schedules tasks across heterogeneous resources. Starvation,
latency, overhead, and heterogeneity are the four main barriers
on which PaRSEC focuses to overcome algorithm scalability
and efficiency. Domain-specific language (DSLs) are utilized
to allow domain experts to ignore the underlying complexity
of implementation, which relies on a dataflow model to create
dependencies between tasks and targets the expression of
maximal parallelism. Parameterized task graph (PTG) [28] and
dynamic task discovery (DTD) [29] are two representative
DSLs in PaRSEC. PTG, used in this paper, uses a concise,
parameterized task-graph description known as job data flow
(JDF) to represent dependencies between tasks. Collective
communications are fully supported in PTG to enhance appli-
cation developer productivity, which distinguishes PaRSEC in
task-based runtime systems. For instance, the collective com-
munication in StarPU is limited, assuming all dependencies
related to a collective communication need to be discovered
when collective communication is performed [30].

D. A Renaissance in Computational Linear Algebra

We bridge the linear algebra and runtime communities using
a synergistic approach that combines knowledge expertise
of HiCMA and PaRSEC. This software solution permits not
only alleviating performance bottlenecks but also increasing
productivity when dealing with large-scale applications on
distributed-memory systems. This is possible by bringing
awareness of the rank information right after the compression
to PaRSEC before HiCMA takes over. This critical insight
may not be useful when block sizes are identical, as in
traditional dense linear algebra (e.g., ScaLAPACK). However,
with low-rank matrix approximations, HiCMA can leverage
the PaRSEC support beyond the usual task scheduling to
additionally handle the impact of rank heterogeneity on the
process grid, the data distribution, the data movement, and
the load balancing. PaRSEC is able to abstract the hardware
complexity as well as the challenges in dealing with the
complex low-rank matrix algorithms. Numerical developers of
low-rank matrix algorithms can focus more on the optimality
of their sequential code before empowering runtime systems
on massively parallel systems. This separation of concerns is
enabling a Renaissance in computational linear algebra.
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(a) Initial ranks. (b) Rank variations.

Fig. 1: Rank distributions for off-diagonal tiles with a matrix
size N = 1.08M, tile size b = 2700 and the number of tiles
NT = 400. The heat map in (a) shows the initial ranks after
compression and the heat map in (b) shows the difference
between the ranks before and after the TLR Cholesky factor-
ization. Each point in a 400-by-400 heat map corresponds to
a tile in the matrix and the color scale of the point represents
the rank of the tile.

IV. NEW CHALLENGES WITH 3D EXPONENTIAL KERNELS

In our examples, we set the variance parameter θ1 = 1.0,
the correlation parameter θ2 = 0.1, and the smoothness
parameter θ3 = 0.5. This setting reduces the Matérn ker-
nel from Equation 2 to the decaying 3D exponential kernel
C(r;θ) = exp(−r/0.1) (st-3D-exp). This matrix kernel
variant is suited to model medium correlations and rough
fields (e.g., estimating wind speed or temperature changes
with altitude). We use Morton ordering [31] for a good
compression ratio. Compared to previous works [22], [23], st-
3D-exp presents new challenges with higher ranks observed
after compression due to the medium correlation and the rough
field. The heat maps in Fig. 1 display the rank distribution
for off-diagonal tiles. In particular, the first figure shows
the initial rank distribution (i.e., after compression) along
with the minimum, average, and maximum rank (minrank,
avgrank and maxrank respectively). The second figure
shows the rank variations before and after the factorization.
With the zoom-in on tiles close to the diagonal, it is clear that
the rank heterogeneity is more pronounced with st-3D-exp
than previously studied matrix kernels (see Fig. 2 of [23])
and becomes even higher after the factorization. From these
figures, we track the following ratios to control the overall
arithmetic complexity and memory footprint:

• ratio_maxrank = maxrank
b

• ratio_discrepancy = maxrank−minrank
b

where b is the tile size, and they are only known at runtime
after the compression step and need to be escalated to the
runtime for proper internal usage.

Fig. 2(a) reports the time-to-solution (left y-axis) as well
as its ratio (right y-axis) of dense GEMM to TLR GEMM on
a single core. These kernels are the most time-consuming
operations in TLR and dense Cholesky. TLR GEMM can be
more expensive than dense GEMM when the rank exceeds a
threshold, determined by the arithmetic complexities of TLR

(a) TLR GEMM vs dense GEMM. (b) Ratio: rank to tile size.

Fig. 2: (a) Single-core dense and TLR GEMM performance
with b = 2700; the sustained performance (Gflop/s) is labeled
with blue for TLR and red for dense. (b) Ratio of maxrank,
avgrank and minrank to tile size with N = 1.08M.

and dense GEMMs. Also, the gap between TLR and dense
GEMM widens as rank continues to rise. The figure also
annotates the kernel performances in Gflops/s of TLR and
dense GEMM. The TLR GEMM performance falls in between
the regime of memory-bound and compute-bound, achieving
roughly 1/3 of dense GEMM. TLR GEMM performance tapers
off at both ends of rank. When the rank is small, TLR
GEMM is mostly memory-bound with lower performance. As
rank increases, it becomes more compute-bound and achieves
higher performance. However, when the rank continues to
grow, the expensive recompression step in the TLR GEMM
kernel dominates, and the performance starts decreasing. The
detailed explanation about internal steps of the TLR GEMM
operation can be found in Section 8.1 of [32]. Fig. 2(b) depicts
the impact of tile size on the rank information (i.e., maxrank,
avgrank and minrank) after compressing a matrix of size
N = 1.08M. As tile size increases, the overall trend for rank
goes down, which indicates a higher data sparsity attained due
to the medium correlation. At the same time, a large tile size
reduces the degree of parallelism, while a small tile size leads
to high ratio_maxrank and ratio_discrepancy.

All in all, st-3D-exp creates a new level of productivity, per-
formance, and scalability challenges for HiCMA that may only
be addressed by a versatile runtime support from PaRSEC, as
explained in subsequent sections.

V. DYNAMIC DATA STRUCTURE MANAGEMENT

A. The Necessity to Densify the Matrix Operator

As mentioned heretofore, a tile’s rank increases when ap-
proaching the diagonal, leading to a TLR GEMM operation more
expensive than dense GEMM for st-3D-exp. This may delay
the critical path (POTRF as well as the first TRSM and SYRK
for each panel factorization) and ultimately impact the overall
time to solution. The idea is to have PaRSEC dynamically
manage the flavor of the data structure at runtime. PaRSEC
detects these specific tiles with high ranks at runtime and
triggers, only for those, a rollback to the original dense format.
Fig. 3(a) shows the symmetric tile matrix (only the lower
triangular part is referenced) with a mixture of TLR (blue) and
dense (red) data layouts. This BAND-DENSE-TLR Cholesky
factorization engenders a different work-flow compared to
the regular factorization, since it needs to take into account
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(a) Data layout view.

P
T S
T G S
T G G S
T G G G S
T G G G G S
T G G G G G S
T G G G G G G S

(1)

(2)

(4)
(3)

(5)

(6)

(b) Compute kernels.

P
T SYRK

T G S
T G G S

T G G G S
T G G G G S
T G G G G G S

S

T G G G G G G S

(c) Data flow.

Fig. 3: Data layout view, numerical kernels and data-flow
of BAND-DENSE-TLR Cholesky with BAND_SIZE = 3. In
figures, P means POTRF; T, TRSM; S, SYRK; G, GEMM. (a)
Red means dense tiles and blue means low-rank tiles. (b)
Unrolling the first panel factorization with colors representing
different kernels. (c) The red arrows show data-flow with dense
tiles while the purple arrows data-flow with low-rank tiles.

the coexistence of both data formats during the data-flow
with new supportive computational kernels from HiCMA. This
densification process of the matrix operator eventually proves
superior in performance and is driven by a performance model
assisted by an auto-tuner.

B. Performance Model Based on BAND_SIZE Auto-Tuning

We introduce a performance model that acts as an auto-tuner
for identifying the BAND_SIZE parameter that controls the
number of sub-diagonals that are required to roll back to dense
formats. For instance, Fig. 3(a) shows the main tile diagonal
with BAND_ID = 1 and highlights in yellow the tile sub-
diagonal with BAND_ID = 2. BAND_SIZE is an inherent tun-
able parameter of the BAND-DENSE-TLR Cholesky algorithm
and may vary depending on the studied covariance matrix
problems. Algorithm 1 presents the performance model to min-
imize the total number of floating-point operations (FLOPs)
by auto-tuning the BAND_SIZE parameter. Implemented in
PaRSEC, the tuning procedure selects a suitable BAND_SIZE
automatically, based on the initial rank distribution revealed
right after the matrix compression. An artificial distribution of
one-dimensional block-cyclic data distribution (1DBCDD) is

Algorithm 1: Algorithm for BAND_SIZE auto-tuning.
Input : Matrix data descriptor

1 Generate the matrix with BAND_SIZE = 1
2 Globalize the rank distribution to all the processes
3 Set ID = 1 and initialize fluctuation
4 do
5 ID := ID + 1
6 ops dense = total TRSM and GEMM FLOPs of all

tiles in sub-diagonal with BAND_ID = ID if
executing in dense format

7 ops tlr = total TRSM and GEMM FLOPs of all tiles
in sub-diagonal with BAND_ID = ID if
executing in low-rank format

8 while ops dense < fluctuation× ops tlr;
Output: BAND_SIZE = ID − 1

provided to evenly distribute all tiles in a sub-diagonal to all
processes, so that all resources are utilized to speed up the
progress. Once BAND_SIZE is calculated, the tiles in sub-
diagonals with BAND_ID < BAND_SIZE are translated back
to dense format in a transparent manner to users. Currently, we
do not support the case in which the ranks may grow or shrink
during the factorization, since it is hard to predict in advance.
However, one can imagine an adaptive online auto-tuning that
densifies or sparsifies the tiles on-demand, but this is beyond
the scope of this paper. This runtime auto-tuning procedure
enables PaRSEC to leverage HiCMA toward a wider coverage
of 3D data-sparse covariance matrix problems beyond st-3D-
exp studied herein.

VI. NEW KERNEL IMPLEMENTATIONS IN HICMA

Densifying the matrix operator requires the implementation
of new computational kernels in HiCMA. Fig. 3(b) distin-
guishes six tile regions that group kernels with the same data
layout property. With the combination of regions ((1)–(6)) and
kernels (POTRF, TRSM, SYRK and GEMM), there are ten types
of different kernels involved, codenamed as “(region)-kernel.”
Each kernel is briefly described below.

• (1)-POTRF: Cholesky factorization of a diagonal (lower
triangular) tile as in LAPACKE.

• (1)-TRSM: dense triangular solve as in CBLAS.
• (4)-TRSM: low-rank triangular solve as in

HCORE DTRSM [32].
• (1)-SYRK: dense symmetric rank-k update as in
CBLAS.

• (3)-SYRK: low-rank symmetric rank-k update as in
HCORE DSYRK [32].

• (1)-GEMM: dense matrix-matrix multiplication as in
CBLAS, C = C −A×BT .

• (2)-GEMM: modified dense matrix-matrix multiplica-
tion, C = C − UA × V T

A ×BT .
• (3)-GEMM: modified dense matrix-matrix multiplica-

tion, C = C − UA × V T
A × VB × UT

B .
• (5)-GEMM: modified low-rank matrix-matrix multi-

plication, UC × V T
C = UC × V T

C − UA × V T
A ×BT .

• (6)-GEMM: low-rank matrix-matrix multiplication as in
HCORE DGEMM [32], UC × V T

C = UC × V T
C − UA ×

V T
A × VB × UT

B .

TABLE I: Arithmetic complexity of all kernels.

ID (Group)-Name Complexity

0 (1)-POTRF 1
3 × b3

1 (1)-TRSM b3

2 (4)-TRSM b2 × b
3 (1)-SYRK b3

4 (3)-SYRK 2× b2 × k + 4× b× k2

5 (1)-GEMM 2× b3

6 (2)-GEMM 4× b2 × k
7 (3)-GEMM 2× b2 × k + 4× b× k2

8 (5)-GEMM 34× b× k2 + 157× k3

9 (6)-GEMM 36× b× k2 + 157× k3
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Compared to the previous HiCMA kernels [32], three new
kernels (in bold) have been implemented to handle the work-
flow of BAND-DENSE-TLR. The arithmetic complexities of
all kernels are reported in Table I (b represents the tile size,
and k is the rank of that tile). The kernel group (1) with O(b3)
complexity is the most expensive and usually operate on dense
tiles close to the diagonal. The other remaining kernel groups
have lower complexity and run on compressed tiles.

VII. NOVEL RANK-AWARE OPTIMIZATIONS IN PARSEC

A. Dataflow Runtime Adaptation
We classify the resulting dataflow into two categories:

LOCAL (connecting tasks on the same process, including
SYRK → SYRK, SYRK → POTRF, GEMM → GEMM and
GEMM → TRSM) and REMOTE (connecting tasks on different
processes, including POTRF → TRSM, TRSM → SYRK and
TRSM → GEMM). Only the REMOTE dataflow can post com-
munications. Fig. 3(c) depicts REMOTE dataflow within a panel
factorization, including three broadcast communications—
POTRF to TRSM, TRSM to GEMM in a row, and TRSM to GEMM
in a column—and one peer-to-peer communication, TRSM
to SYRK. This figure highlights the broadcast from POTRF
to TRSM and two kinds of broadcasts from TRSM to GEMM
with arrows of different colors representing different types of
data encapsulated in dataflow—red meaning dense data while
purple low-rank data. The dynamic data structure that supports
BAND-DENSE-TLR pressures the runtime to accommodate
data motion with heterogeneous data layout.

Fig. 4 shows the BAND-DENSE-TLR algorithm by high-
lighting the first three panel factorization steps with NT = 8
(the number of tiles in a dimension) and BAND_SIZE = 3.
Different colors represent kernel regions or completion, similar
to Fig. 3. Tiles with bold yellow boundaries are included
in the critical path for that panel factorization, assuming the
critical path spans distance 1 in the dataflow dependencies. It
is worth noting that the type of kernels using a specific tile will
change across successive iterations; for instance, (3)-GEMM,
(2)-GEMM, and (1)-GEMM are successively called on the
tile with index (m,n) = (4, 3) for the first three iterations.
This represents one example of the levels of complexity that
PaRSEC abstracts from HiCMA’s TLR algorithms.
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(a) Panel factorization
of the 1st iteration.
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(b) Panel factorization
of the 2nd iteration.
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(c) Panel factorization
of the 3rd iteration.

Fig. 4: BAND-DENSE-TLR Cholesky algorithm. Colors rep-
resent different tile regions, with white labeling the completed
task. The numbers are tiles’ row and column index. P means
POTRF; T, TRSM; S, SYRK; G, GEMM.

B. Dynamic Memory Designation
As mentioned above, st-3D-exp shows properties of high

ratio_maxrank, high ratio_discrepancy, and rank
variations during the Cholesky factorization, even when the
BAND-DENSE-TLR feature is in use. If the memory is stati-
cally allocated based on the pre-defined maxrank parameter
(see Section III-B), it will (1) limit the problem size that can
be solved on a specific set of computational resources, and
(2) restrict the tile size used to expose parallelism. Indeed, as
indicated in Sections III-B and IV, there is an inverse rela-
tionship between the accuracy of the low rank representation
and the tile size used, in the sense that the maxrank of a
tile increases as the tile size decreases—a problem that can
further be exacerbated by the possible rank growth during the
factorization. The PaRSEC runtime system provides users a
flexible way to designate the input data for a task, but also the
data the task will propagate to its successors. This capability
allows the user code to precisely allocate the needed memory
and is then injected back into the runtime to serve its purpose.
PaRSEC-HiCMA-New takes advantage of this capability

in two distinct ways. First, during the initialization, the matrix
is allocated based on the initial rank according to the required
accuracy threshold using temporary memory from a reusable
memory pool provided by the PaRSEC runtime. Once the
matrix is generated, the actual rank of each tile becomes
known, and the exact amount of memory necessary for each
tile can be allocated and associated with the corresponding
constructs in the runtime system. Second, during the factor-
ization itself, the rank of the tiles might change. To adapt
to this change, the low-rank GEMM kernels, (5)-GEMM and
(6)-GEMM, are split into two stages clearly delimited by the
recompression operation. The first stage consists of operations
until recompression and the second stage consists of the
remaining operations after recompression. As a result, the
memory for each tile can not only be reallocated but also re-
associated with the runtime system between these two stages
if rank growth occurs as a result of re-compression. This re-
association takes advantage of the distinction between logical
and physical data in the PaRSEC runtime. The algorithm is
free to reassess at any moment the association between logical
and physical, and the runtime will automatically adapt (both
in terms of dependencies between tasks and data movements).
This simple but extremely useful feature is one of the most
critical differences between the PaRSEC runtime and other
task-based runtime, and is one of the key components that
allowed our approach to scale to unprecedented problem sizes.

C. Hybrid Data Distribution
The discrepancy between dense on-band tiles and com-

pressed off-band tiles can be expressed using 3 types of met-
rics: memory, computation, and communication. (1) Memory:
memory needed for off-band tiles is proportional to their rank,
and they require 2bk elements, while on-band tiles require
b2 elements. (2) Computation: after rolling tiles with high
rank back into the dense format according to the arithmetic
complexity from Table I, ranks of the remaining compressed
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Fig. 5: Hybrid data distribution suitable for
BAND-DENSE-TLR Cholesky and the corresponding
process ID. (a) as used in PaRSEC-HiCMA-Prev with
BAND_SIZE = 1; (b) for lower triangular matrix and (c) for
upper triangular matrix, both with BAND_SIZE = 3.

tiles are more than an order of magnitude smaller than the tile
size. Thus, according to Table I, kernels operating on dense
tiles have a higher computational cost than the corresponding
kernels on compressed tiles. (3) Communication: tasks oper-
ating on on-band tiles send dense data (b2 elements) while
those operating on off-band tiles send compressed data (2bk
elements) (see Fig. 3(c)).
PaRSEC-HiCMA-Prev [22] introduces the concept of

“band distribution,” which superposes two intertwined
2DBCDDs using different process grids, but restricts its usage
to a band of size 1, as shown in Fig. 5(a), where only
the diagonal tiles are dense and evenly distributed across all
processes in a 1DBCDD. In BAND-DENSE-TLR algorithm,
BAND_SIZE could be bigger than one but remains relatively
small compared to NT (1 < BAND_SIZE & NT, demonstrated
in Section VIII), thus tiles on-band (not only diagonal) need
to be evenly distributed across all processes to address any
imbalance issues described thus far. We propose to adapt this
“band distribution” to the problem type as shown in Fig. 5(b)
for the lower triangular matrix and Fig. 5(c) for the upper
triangular matrix. Distribution on the band could be seen as a
modified 1DBCDD: row-based (tiles on-band in a row mapped
to the same process) for the lower triangular matrix, and
column-based (tiles on-band in a column mapped to the same
process) for the upper triangular matrix. The main reasons
behind such a choice are twofold: a well balanced panel
factorization because dense TRSMs in the panel factorization
are distributed to different processes and can therefore be
executed in parallel; and the reduction of communications
on the critical path because kernels on the tiles on the same
row are mostly sequential, and the distribution chosen here
removes the need for communications between these kernels.

D. Recursive Numerical Kernels

Tasks on and near the critical path are important because
they affect the time to solution by impacting the discov-
ery of the next panel factorization (i.e., the lookahead). In
BAND-DENSE-TLR Cholesky, we can consider that the entire
band, composed only by dense tiles, (red region in Fig. 4),
and therefore performing only traditional dense Level-3 BLAS
kernels is our critical path at distance BAND_SIZE. Therefore,

these tasks need to be promoted and executed as quickly as
possible, to enable all available parallelism in the off-band
part. Moreover, speeding them up will reduce the waiting
time by minimizing the potential starvation—particularly at the
end of the execution where the opportunities for parallelism
are less. PaRSEC-HiCMA-Prev [22] utilizes the concept of
“nested computing” to expedite POTRF execution by recur-
sively dividing the local computations on large dense tiles
into smaller kernels. The direct outcome is more parallelism,
which can then be exploited if computational resources are
available. In PaRSEC-HiCMA-New, we extend this idea, not
only targeting POTRF but instead applying to all kernels in
region (1) of Fig. 3(b) including (1)-POTRF, (1)-TRSM,
(1)-SYRK and (1)-GEMM. As a result, all dense kernels
close to the critical path can potentially be sped up, such that
the discovery of the next panel factorization is expedited with
the possibility of increasing utilization of hardware resources.

VIII. PERFORMANCE RESULTS AND ANALYSIS

A. Environment Settings
The experiments were conducted on Shaheen II at KAUST,

a Cray XC40 system with 6,174 compute nodes, each of
which has two 16-core Intel Haswell CPUs running at 2.30
GHz and 128 GB of DDR4 main memory. Intel compiler
suite 19.0.5.281 with sequential Math Kernel Library (MKL)
version 2019.5 for optimized BLAS and LAPACK kernels is
deployed. Numerical backward errors have been consistently
validated against the application accuracy threshold to ensure
correctness. We compress off-band tiles and retain their most
significant singular values (and associated vectors) above the
accuracy threshold of 10−8 (except in Section VIII-G), which
ultimately yields an absolute numerical error of order 10−9

in the solution of the linear system in Equation 1 to make
it consistent as in [22]. This 10−9 tolerance is sufficient
to satisfy the prediction accuracy requirements of the 3D
climate and weather prediction applications, as described
in [8]. We employ the “band distribution” and a 2DBCDD
for tiles off-band with a process grid P × Q (as square as
possible) where P ≤ Q. We use the same BAND_SIZE
for BAND-DENSE-TLR algorithm and “band distribution”.
Calculations and communications are performed in double-
precision floating-point arithmetic. We run our experiments at
least three times; and since no major performance variability
has been noticed, the minimum time to solution is reported.

B. Impact of BAND_SIZE Auto-Tuning
The BAND_SIZE parameter for BAND-DENSE-TLR algo-

rithm is automatically tuned, in a process totally transparent
to the user. The autotuning process includes (1) generating
matrix with BAND_SIZE = 1, (2) BAND_SIZE auto-tuning,
and (3) matrix regeneration for tiles within a band with the
tuned BAND_SIZE. Fig. 6 evaluates the entire process of
BAND_SIZE auto-tuning on two settings N = 1.08M and
N = 2.16M.

• Fig. 6(a) shows changes in time-to-solution and
Fig. 6(b) the corresponding total flops while varying the
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(a) Time to Solution.

1.57X

1.53X

(b) Total flops.

(c) Flops per sub-diagonal. (d) Evaluation on 512 nodes.

Fig. 6: Evaluation of BAND_SIZE auto-tuning.

BAND_SIZE, and both with b = 2400. The rectangle
boxes are range with fluctuation ∈ [0.67, 1] (see Al-
gorithm 1). We choose to use the minimum value of
this range in the remaining experiments because of (1)
FLOPs increase in TRSM and SYRK near the critical
path if rolling back the tiles to dense format, (2) rank
variations during factorization, and (3) significance of
dense-band dominating time-to-solution (demonstrated in
Section VIII-F). It is clearly visible in these figures that
each case has a sweet spot in terms of time-to-solution
and the corresponding FLOPs, and that the predicted
BAND_SIZE is close to the optimal.

• Fig. 6(c) demonstrates the process of Algorithm 1 with
fluctuation = 1 by comparing the FLOPs of each
sub-diagonal in dense and TLR format. Annotations in
this figure are the maxrank for the corresponding sub-
diagonal, for the two matrix sizes we investigated (red
for N = 1.08M and blue for N = 2.16M). For the
TLR format, the FLOPs of a sub-diagonal decrease as
BAND_ID increases mainly because of the reduction in
maxrank, but also due to the reduction of the number
of tiles in the sub-diagonal, and therefore the number
of operations on these tiles. This second reduction is
also true for the dense format; successive sub-diagonals
have a monotonically decreasing number of tiles and thus
marginally fewer FLOPs.

• Fig. 6(d) shows the time-to-solution of the BAND_SIZE
auto-tuning process and the cost of the matrix regenera-
tion after BAND_SIZE tuning for the experiments on 512
nodes. The corresponding tuned BAND_SIZE is marked
at the top of the figure. Based on these results it is clear
that the time of BAND_SIZE auto-tuning process, as
well as the necessary time for the matrix regeneration,
is negligible when compared to the cost of the entire
Cholesky factorization.

(a) Time to solution. (b) Corresponding band size.

Fig. 7: Effect of tile size.

C. Suitable Tile Size Selection
Tile size is also a critical parameter for the tile-based

algorithm, trading off between performance per task and
concurrency between tasks. A more in-depth analysis of the
performance/concurrency tradeoff for regular problems (where
the cost of all tasks is similar) can be found in [33] for multiple
runtime systems. For TLR Cholesky, [23] proposed a model to
calculate the approximate optimal tile size by assuming a first-
order approximation—the serial part (the critical path in the
algorithm) at distance one overlapping with the parallel part
(everything outside the critical path). This assumption does
not hold for the st-3D-exp application because of the higher
ranks in the matrix, but also due to the dense operations in
the band. Putting aside the dense band part, [17] proposed
that the minimal operations count could be attained by a TLR
matrix computation when b = O(

√
N), which we can use as

a rough starting point. Fig. 7(a) present two experiments, the
time-to-solution for a TLR factorizations using different tile
sizes on 64 nodes with a N = 1.08M (left y-axis) and 256
nodes with a N = 2.16M (right y-axis). The estimated value
computed using [17], around 1039 for the red line and 1469
for the blue, are reasonably good estimates as a starting point.
Fig. 7(b) displays the corresponding auto-tuned BAND_SIZE
which decreases as tile size increases. This can be explained
from the observation in Fig. 2(b) that as tile size increases,
the ratio_maxrank decreases, thus reducing the need to
convert compressed tiles into dense tiles. In fact, a suitable tile
size depends on many factors: the data and the algorithm, the
compute capabilities of the computing resources, the network
performance and capabilities, matrix size, etc. Proposing a
model to predict the optimal tile size for a complicated hybrid
BAND-DENSE-TLR algorithm is outside the scope of this
paper. However, for the scope of our study it is enough to
conduct the experiments starting from a tile size (such as the
one proposed in [17]), and stopping when the time-to-solution
trend changes, basically finding a local minima.

D. Impact of Dynamic Memory Designation
PaRSEC-HiCMA-New can allocate the exact memory

amount for each tile based on the actual rank during factoriza-
tion to remove the restriction imposed by the statically prede-
fined maxrank in PaRSEC-HiCMA-Prev. Fig. 8 evaluates
this feature for a case running on 512 nodes.

The left figure displays the memory reduction between
allocating each compressed tile as 2 × maxrank × b
in PaRSEC-HiCMA-Prev and as 2 × k × b + r in
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Fig. 8: Memory usage evaluation. Left, memory reduction on
512 nodes; right, analysis of memory allocation and GEMM.

PaRSEC-HiCMA-New with r the reallocation to the mini-
mum size as needed during the factorization. The memory
saved increases with the matrix size, up to 44× for this setting.

The right figure simulates the effect of memory reallocation
in GEMM with b = 4500. It compares the time of a TLR GEMM
with the cost of a memory allocation for the amount of 2×k×b
(left y-axis) and the corresponding ratio (right y-axis) with
variant k ∈ [13, 1079] (the actual minrank and maxrank of
off-band tiles from this experiment on 512 nodes). The time
for memory allocation is consistently more than two orders of
magnitude cheaper than a TLR GEMM, and only TLR GEMMs
with rank growing need to reallocate memory.

E. Comparison with State-of-the-Art

Existing alternative approaches based on low-rank ap-
proximations consist of standalone software solutions but
rely all on the traditional, static, and rigid 2DBCDD for
matrix computations on distributed-memory systems. They
do not have mechanisms for handling load imbalance and
dynamic memory allocation. Therefore, we only compare
the performance of PaRSEC-HiCMA-New against state-of-
the-art PaRSEC-HiCMA-Prev for the st-3D-exp applica-
tion. Due to the different memory allocation strategies in
the two libraries, we compared up to the largest problem
size that could be executed with PaRSEC-HiCMA-Prev
on 512 nodes with 128 GB of memory per node. For in-
stance, PaRSEC-HiCMA-Prev could factorize matrix sizes
up to 3.24M on 512 nodes (see Fig. 8) because of the
memory limit per node 128 GB. Table II lists the per-
formance traits for these matrix sizes. “Band-dense” shows
the effect of BAND-DENSE-TLR algorithm and “hybrid
distribution” with only (1)-POTRF recursive as that in

TABLE II: Performance comparisons.

No. of
Nodes

Matrix
Size

PaRSEC
-HiCMA-prev

(seconds)

Band-
dense

(seconds)

Recursive
Kernels

(seconds)

Total
Speedup

64 1080000 1933.53 446.51 368.44 5.24X
128 1080000 1579.57 361.57 236.51 6.68X
256 1080000 1526.75 352.81 210.25 7.26X
512 1080000 1477.96 316.13 195.74 7.55X
256 2160000 3221.70 774.97 614.44 5.24X
512 2160000 3289.91 632.48 520.05 6.32X
512 3240000 5868.97 1536.10 1009.31 5.81X

(a) N = 1.08M on 64 nodes. (b) N = 2.16M on 256 nodes.

Fig. 9: Panel release time; x-axis is the panel position in matrix
which is panel ID/NT.

PaRSEC-HiCMA-Prev, and “recursive kernels” describes
the impact of the recursive support for all numerical kernels.
The major performance improvement comes from “Band-
dense” because of (1) FLOPs reduction, as shown in Fig. 6(b),
about 1.5×; (2) more balanced work-flows due to “hybrid
distribution”; (3) improved parallelism exposed to runtime
system due to smaller tile size BAND-DENSE-TLR algorithm
can support(see Section VII-B). “Recursive kernels” further
improves performance by shortening the critical path, which
improves concurrency and expedites discovery of panel re-
lease. To highlight this part, Fig. 9 indicates the relative release
time of each panel factorization for the two experiments
in Table II. Each panel is released significantly earlier in
PaRSEC-HiCMA-New than PaRSEC-HiCMA-Prev mostly
because of the recursive dense GEMMs with more balanced
work-flow instead of expensive TLR GEMMs close to the band
which delay the panel release with accumulative effect.

F. Performance Evaluation at Scale
We first highlight how close the current performance is from

the performance of the critical path as described above. Fig. 10
compares the time to solution on 512 nodes for different matrix
sizes of the entire Cholesky factorization (All_kernels)
compared with only the cost of the factorization on the dense
part plus the panel (or the entire Cholesky factorization except
for all low rank updates, No_TLR_GEMM), which is equivalent
to the critical path at distance BAND_SIZE. The red lines
indicate time to solution while the blue lines mean FLOPs.
Although only a tiny fraction of FLOPs, No_TLR_GEMM
contributes to most time-to-solution, because closer to the
diagonal, and thus closer to the critical path, there is less
available parallelism at each step. The time-to-solution ratio
drops as matrix size increases, because (1) BAND_SIZE,

Fig. 10: Performance evalua-
tion on 512 nodes.

Fig. 11: Performance evalua-
tion on 16 nodes.
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Fig. 12: Performance on Shaheen II.

which is a tiny fraction of NT, decreases inversely proportional
with the matrix size, as highlighted in Fig. 6(d); (2) the number
of tiles on-band is O(NT) while O(NT2) tiles off-band exist.

Then, we measure the system usage by displaying the CPU’s
busy time and idle time of each process for N = 2.16M
on 16 nodes (processes), as shown in Fig. 11. Load im-
balance may happen among single-process nodes due to the
static 2DBCDD, the irregular rank distribution and the rank
variations (see Fig. 1) for off-band tiles. However, there is
little imbalance among threads in a process, roughly achieving
more than 90% CPU occupancy on average. In addition, the
performance achieves 4.88 Tflop/s, which is about 1/3 of the
sustained Linpack performance on 16 nodes Shaheen II, i.e.,
14.32 Tflop/s. TLR Cholesky is not purely compute-bound,
since most flops comes from TLR GEMMs (see Fig. 10). TLR
GEMM attains about one-third of the performance of a regular
dense GEMM on a single core (see Fig. 2(a)).

Finally, Fig. 12 describes a large-scale performance evalua-
tion with up to 2048 nodes and matrix size 11.88M ×11.88M
The performance of each matrix size shows the strong scalabil-
ity, and the graph for each node depicts weak scalability. The
strong scaling improves as the matrix size increases, thanks
to the high degree of parallelism. It is worth noting that
we are still far away from the hardware memory capacity.
For instance, the memory footprint needed per node for the
maximal matrix size on 512 nodes (i.e., 8.64M) is 9.31 GB
before factorization and 12.33 GB after factorization (see
Fig. 8(a)), which is still far from the 128 GB memory capacity
on the system. The dynamic memory designation may enable
solving even large problem sizes for the same node budget.

G. Evaluation of Different Accuracy Thresholds
Time to solution is not the only metric of interest for TLR

factorizations; it is also crucial to be able to provide the
accuracy expected by the target science domain. In Fig. 13,
we evaluate our algorithm from the standpoint of the accuracy
threshold, its impact on the band size, and the time to solution.
First, it is important to notice that the accuracy has a direct
impact on the initial rank of the compressed tiles—a lower
accuracy provides a faster decay of the ranks in the sub-
diagonals. These 3 additional accuracy threshold (10−7, 10−5

and 10−3) are complementary to the analysis above for 10−9.
• Fig. 13(a) analyzes BAND_SIZE auto-tuning for three

accuracy thresholds alike that for accuracy 10−9 shown in

Fig. 13: Evaluation of accuracy thresholds on 512 nodes.

Section VIII-B. The rectangular boxes are the same range
fluctuation ∈ [0.67, 1] as before, and there is only one
point within this range for accuracies 10−5 and 10−3.

• The ratio_maxrank in Fig. 13(b) shows a rapid
descent with the increase in matrix size, and with the
decrease in accuracy. The autotuned band size tends to
vary little and stabilize quickly. BAND_SIZE = 1 is
always selected for accuracy 10−3 because of the large
rank discrepancy for tiles on- and off- diagonal, similar
to 2D applications.

• Finally, the time to solution depicted in Fig. 13(c) is
consistent with the initial k and the expected FLOPs.

All in all, these results show the efficiency and scalability
of PaRSEC-HiCMA-New for TLR Cholesky factorization, as
well as its capability of delivering faster the results with the
expected accuracy.

IX. CONCLUSION AND FUTURE WORK

This paper demonstrates how a synergistic approach be-
tween HiCMA and PaRSEC based on a separation of concerns
can improve the productivity, performance, and scalability of
the challenging 3D exponential matrix kernel in the context
of environmental applications. By propagating the rank infor-
mation to the PaRSEC runtime, proper rank-aware runtime
decisions are made for dynamic data structure adaptation,
memory footprint optimizations, and data distribution. Us-
ing recursive formulations on tasks belonging to the critical
path, we further expose concurrency to PaRSEC in order
to shorten the makespan. Our resulting high-performance
BAND-DENSE-TLR Cholesky outperforms previous imple-
mentations of data-sparse Cholesky factorization by up to
7-fold on a large-scale distributed-memory system, while
minimizing the memory footprint up to a factor of 44-fold.
For future work, we would like to provide dynamic load
balancing between nodes to further mitigate the idle time.
A more generic approach to BAND-DENSE-TLR will be to
change the data structure on a tile basis instead of a band
basis to capture tiles with high ranks located far away from the
diagonal. Moreover, we would like to accelerate the tasks on
the critical path using GPU hardware accelerators and combine
it with mixed-precision algorithms.
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[9] S. Börm, L. Grasedyck, and W. Hackbusch, “Introduction to hierarchical
matrices with applications,” Engineering Analysis with Boundary Ele-
ments, vol. 27, no. 5, pp. 405 – 422, 2003.

[10] S. Goreinov, E. Tyrtyshnikov, and A. Y. Yeremin, “Matrix-free iterative
solution strategies for large dense linear systems,” Numerical Linear
Algebra with Applications, vol. 4, no. 4, pp. 273–294, 1997.

[11] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices. Part
I: Introduction to H-matrices,” Computing, vol. 62, pp. 89–108, 1999.

[12] R. Kriemann, “H-LU factorization on many-core systems,” Comput. Vis.
Sci., vol. 16, no. 3, p. 105–117, Jun. 2013.

[13] E. Corona, P.-G. Martinsson, and D. Zorin, “An O(N) direct solver for
integral equations on the plane,” Applied and Computational Harmonic
Analysis, vol. 38, no. 2, pp. 284–317, 2015.

[14] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A distributed-memory
package for dense hierarchically semi-separable matrix computations
using randomization,” ACM Transactions on Mathematical Software
(TOMS), vol. 42, no. 4, p. 27, 2016.

[15] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg,
and M. O’Neil, “Fast direct methods for Gaussian processes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 2, pp. 252–265, 2015.
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